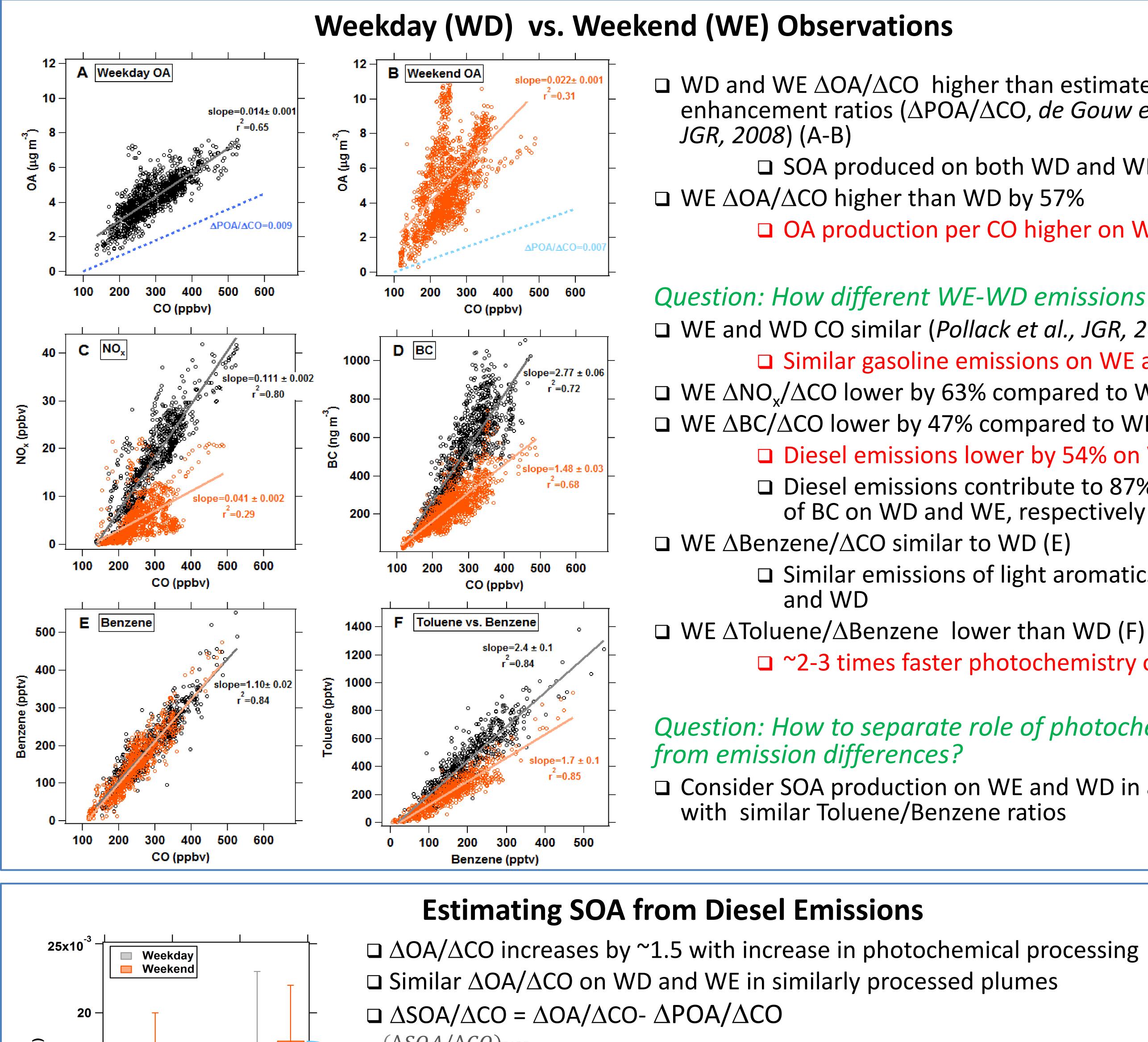
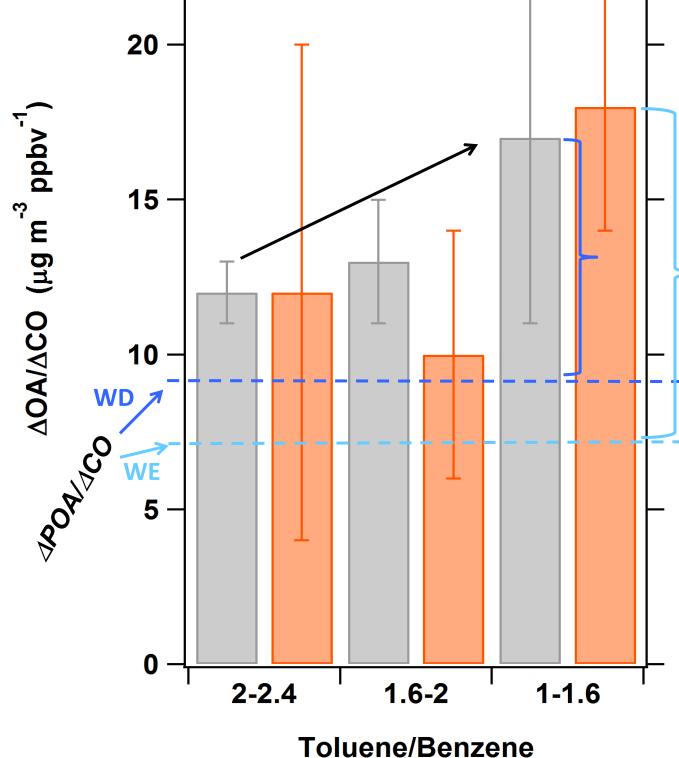
Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass


<u>R. Bahreini *^{1,2}, A.M. Middlebrook ², J.A. de Gouw ^{1,2}, C. Warneke ^{1,2}, M. Trainer ², C.A. Brock ², H. Stark ^{1,2}, S.S. Brown ², W.P. Dube ^{1,2}, J.B. Gilman ^{1,2}, K. Hall ^{1,2}, J.S.</u> Holloway ^{1,2}, W.C. Kuster ², A.E. Perring ^{1,2}, A.S.H. Prevot ³, J.P. Schwarz ^{1,2}, J.R. Spackman ^{1,2}, S. Szidat ⁴, N.L. Wagner ^{1,2}, R.J. Weber ⁵, P. Zotter ³, D.D. Parrish ² * Now at University of California- Riverside, ¹University of Colorado- CIRES; ²NOAA Earth Systems Research Laboratory; ³ Paul Scherrer Institut; ⁴ University of Bern; ⁵ Georgia Institute of Technology * Contact: Roya.Bahreini@ucr.edu)


Introduction: Secondary Organic Aerosol (SOA) can be formed from volatile and intermediate-volatility organic compounds (VOCs, IVOCs) in gasoline and diesel exhaust as well as biogenic hydrocarbons. SOA is a large fraction of ambient submicron aerosol mass and may contribute to regional air quality and climate change. However, its sources and formation pathways are not well understood. *Question: What sources dominate urban SOA formation?* Vehicular emissions different on weekends □ Use weekday-weekend measurements from NOAA-P3 aircraft in the LA Basin, during CalNex-2010 Estimate diesel and gasoline contribution to SOA

Vehicular Emissions					
Diesel fuel used ~15% of total fuel used in CA (<u>http://www.boe.ca.gov/sptaxprog/spftrpts.htm</u>)					
	NO _x	CO	Reactive Gases	Black Carbon (BC)	POA
Gasoline	Low	High	VOCs?	Low	Low
Diesel	High	Low	IVOCs?	High	High

Diesel emissions lower on weekends compared to weekdays (e.g., Marr et al., Atmos. Environ., 2002; Harley et al., EST, 2005; Murphy, ACP, 2008; Pollack et al., JGR, 2012) \Box Higher O₃ and lower BC on weekends

Estimating SOA from Diesel Emissions

 $\Box \Delta OA/\Delta CO$ increases by ~1.5 with increase in photochemical processing \Box Similar $\Delta OA/\Delta CO$ on WD and WE in similarly processed plumes

 $\Delta (\Delta SOA/\Delta CO)_{WD} = 0.72 \pm 0.39$ $(\Delta SOA/\Delta CO)_{WE}$

Average diesel contribution to SOA is zero within the uncertainties □ Upper limit contribution from diesel emissions to SOA is 20% *Question: What are the implications?*

- □ Valuable to identify species in gasoline responsible for SOA formation
- □ SOA from gasoline ~4 Tg/yr globally (within a day of processing); ~16% of global biogenic SOA
- □ Reducing gasoline emissions may significantly reduce SOA production, locally and globally

 \Box WD and WE $\Delta OA/\Delta CO$ higher than estimated primary enhancement ratios ($\Delta POA/\Delta CO$, de Gouw e t al.,

□ SOA produced on both WD and WE \Box WE $\Delta OA/\Delta CO$ higher than WD by 57% □ OA production per CO higher on WE

Question: How different WE-WD emissions are? □ WE and WD CO similar (*Pollack et al., JGR, 2012*) □ Similar gasoline emissions on WE and WD \Box WE $\Delta NO_{v}/\Delta CO$ lower by 63% compared to WD (C) \Box WE Δ BC/ Δ CO lower by 47% compared to WD (D) □ Diesel emissions lower by 54% on WE □ Diesel emissions contribute to 87% and 76%

of BC on WD and WE, respectively \Box WE \triangle Benzene/ \triangle CO similar to WD (E) Similar emissions of light aromatics on WE

□ ~2-3 times faster photochemistry on WE

Question: How to separate role of photochemistry

□ Consider SOA production on WE and WD in air masses with similar Toluene/Benzene ratios